|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||
java.lang.Objectorg.knowceans.util.Densities
public class Densities
Densities calculates for different density functions the likelihood of a data item given the parameters
| Constructor Summary | |
|---|---|
Densities()
|
|
| Method Summary | |
|---|---|
static double |
pdfBeta(double x,
double a,
double b)
beta likelihood |
static double |
pdfBinomial(int n,
int N,
double p)
Binom(n | N, p) using linear binomial coefficient |
static double |
pdfDirichlet(double[] xx,
double alpha)
Symmetric Dirichlet likelihood: |
static double |
pdfDirichlet(double[] xx,
double[] alpha)
Dirichlet likelihood using logarithmic calculation |
static double |
pdfDirichlet(double[] xx,
double[] basemeasure,
double precision)
Dirichlet likelihood using logarithmic calculation |
static double |
pdfDmm(double[] xx,
double[] probs,
double[][] parameters)
Dirichlet mixture likelihood using Dirichlet parameters and assuming independence between components. |
static double |
pdfDmm(double[] x,
double[] probs,
double[][] basemeasure,
double[] precision)
Dirichlet mixture likelihood using mean and precision |
static double |
pdfGamma(double x,
double a,
double b)
gamma likelihood p(x|a,b) = x^(a-1) * e^(-x/b) / (b^a * Gamma(a)) |
static double |
pdfGmm(double x,
double[] probs,
double[] mean,
double[] sigma)
GMM likelihood |
static double |
pdfMultinomial(int[] nn,
double[] pp)
Mult(nn|pp) using logarithmic multinomial coefficient |
static double |
pdfNorm(double x,
double mu,
double sigma)
Normal likelihood |
| Methods inherited from class java.lang.Object |
|---|
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
| Constructor Detail |
|---|
public Densities()
| Method Detail |
|---|
public static double pdfNorm(double x,
double mu,
double sigma)
x - mu - sigma -
public static double pdfGmm(double x,
double[] probs,
double[] mean,
double[] sigma)
x - k - probs - mean - sigma -
public static double pdfDmm(double[] x,
double[] probs,
double[][] basemeasure,
double[] precision)
x - probs - basemeasure - -- multinomial parameter around which the distribution
scatters, m = alpha / sprecision - -- s = sum alpha
public static double pdfDmm(double[] xx,
double[] probs,
double[][] parameters)
x - k - probs - mean - precision -
public static double pdfGamma(double x,
double a,
double b)
x - valuea - (shape?)b - (scale?)
public static double pdfBeta(double x,
double a,
double b)
x - data itema - pseudo counts for successb - pseudo counts for failure
public static double pdfDirichlet(double[] xx,
double[] alpha)
Dir(xx|alpha) =
Gamma(sum_i alpha[i])/(prod_i Gamma(alpha[i])) prod_i xx[i]^(alpha[i]-1)
xx - multivariate convex data item (sum=1)alpha - Dirichlet parameter vector
public static double pdfDirichlet(double[] xx,
double[] basemeasure,
double precision)
Dir(xx|alpha) =
Gamma(sum_i alpha[i])/(prod_i Gamma(alpha[i])) prod_i xx[i]^(alpha[i]-1)
xx - multivariate convex data item (sum=1)basemeasure - -- normalised coefficients (= mean)precision - -- central moment ...
public static double pdfDirichlet(double[] xx,
double alpha)
Dir(xx|alpha) = Gamma(k * alpha)/Gamma(alpha)^k prod_i xx[i]^(alpha - 1)
xx - multivariate convex data item (sum=1)alpha - symmetric parameter
public static double pdfMultinomial(int[] nn,
double[] pp)
nn - counts for each categorypp - convex probability vector for categories
public static double pdfBinomial(int n,
int N,
double p)
n - N - p -
|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||