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1 Introduction

The hierarchical Dirichlet process [TJB+06] has been frequently used to implement
non-parametric admixture models, i.e., such models that estimate the number of mixture
components, which parametric models like latent Dirichlet allocation [BNJ03] fall short
of.

Unfortunately, the structure of the HDP seems to impose a level of complexity in
existing implementations like that of Yee Whye Teh (“np-bayes”, Matlab / C) or that
of Chong Wang (C++, with split-merge operations) that makes them highly demanding
to understand for non-experts without an extensive amount of time for analysing them,
despite their stability and excellent quality. One may argue that this time invested will
facilitate understanding of the underlying principles, and it indeed does, but to “flatten
the learning curve”, a simpler basis for experimentation may be a desirable alternative.

This is the reason for “yet another HDP implementation”, and in particular, the goal
may be to come (subjectively) as close as possible to an understanding of the HDP as
an extension of the finite LDA model, adding an estimator for the number of topics and
the associated parameters. Because of this goal, the implementation considered here is
simply called “infinite LDA”.

This note is targeted at students of LDA that want to walk some extra steps to
understand what’s beyond the finite model. From my experience, there seems to be such
a high interest in making LDA independent of choosing the number of topics K that it
isn’t a stark exaggeration to say that a large portion of the people studying LDA have
at least thought about studying the HDP as its natural extension. This note is therefore
hopefully filling a gap of “simpler” texts about the subject. It will give some simple
introduction to the HDP in Section 2 and will explain the open-source implementation
from a technical and implementational background in Section 3.
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2 Some background on the HDP

We can view the latent Dirichlet allocation (LDA) model as a Bayesian version of the
admixture model. An admixture is a mixture of mixtures, and in LDA, documents are
modeled as mixtures of topics, and topics as mixtures of terms (unique words). A more
detailed explanation of LDA is found in the original literature [BNJ03] and [GrSt04],
or in tutorials like [Hein09b]. The intuition behind this type of mixing is illustrative for
text: A document is composed of some thematic units (topics), which are obscured by
word-choice noise. By being able to match documents via topics, documents become
similar that have synonymous but literally different words, which would be missed for
literal matching. Bayesian analysis of this in LDA is supposed to find the topic distribu-
tions of the documents and the term-distributions of the topics given the words observed
in documents.

The question that arises in models like LDA is how many topics a given set of texts
has, or equivalently how many its mixtures are composed of, which is a dimension that
should be estimated from the data. This is where the Dirichlet process enters the scene,
and in the following I try to explain the Dirichlet process based on an understanding
of the Dirichlet distribution and using some derivation steps from [Teh10]. However, in
this document, a minimum of concepts will be introduced necessary to understand the
“mechanism” behind the HDP. For more technically thorough explanations, please refer
to [TJB+06,TeJo09,Neal98,Teh10]. In fact, these articles are explicitly recommended
after understanding the concepts described here.

Dirichlet process. The Dirichlet process (DP) is a stochastic process that generates
probability distributions, in a way generalising the Dirichlet distribution (DD) that gen-
erates multinomial parameter vectors and thus distributions over discrete categories.

Let’s have a look at the DD, which is described in more detail in [Hein09b]. The DD
Dir(~α) has a positive parameter vector ~α, which may actually be considered a discrete
distribution G0 over a set of categories k ∈ [1,K] scaled by α:

Dir(~α) ≡ Dir(αG0) , G0 =
∑K

k=1π0kδ(x − k) ,
∑

kπ0k = 1 (1)

where δ(x) is the Dirac function that has a unit integral and is non-zero only at x = 0.
We call G0 a base distribution of the DD. In effect, G0 is a distribution that has K spikes
with height π0k at locations 1 to K, and the DD produces from this samples that are
distributions of the same form:

G ∼ Dir(αG0) ⇒ G =
∑K

k=1πkδ(x − k) ,
∑

kπk = 1 , (2)

that is, samples G are discrete distributions with parameters ~πk. In fact, the samples G
have an expectation of G0, from which they deviate according to the precision (inverse
variance) parameter α.

Informally speaking, the DP extends the DD by generalising the base distribution
from the discrete G0 to “almost any” distribution H0 defined on some support set S (H0).
For instance, the Gaussian has a support set of S (N(·)) = R. Interestingly, samples from
the DP then are still discrete but instead of the category labels k of the DD (or their
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locations on the x-axis, δ(x − k)), the point masses of the DP samples are somewhere
on the support set S (H0), and (2) generalises to:

H ∼ DP(αH0) ⇒ H =
∑∞

k=1πkδ(x − θk) ,
∑

kπk = 1 , θk ∈ S (H0) , (3)

that is, samples H are discrete distributions over an infinite number of points θk in the
support space of the base distribution that have weights πk. The defining property of the
DP is that its samples have weights πk and locations θk distributed in such a way that
when partitioning S (H) into finitely many arbitrary disjoint subsets S 1, . . . , S J , J < ∞,
the sums of the weights πk in each of these J subsets are distributed according to a
Dirichlet distribution that is parametrised by α and a discrete base distribution (like G0)
whose weights are equal to the integrals of the base distribution H0 over the subsets S n.
Denoting the subset weight by H(S n), i.e., the sum of the πk whose θk lie in S n, and
the subset integral over the base distribution by H0(S n), we may express the defining
property of the DP as:

H(S 1), . . . ,H(S J) ∼ Dir(αH0(S 1), . . . , αH0(S J)) . (4)

Taking the example of a Gaussian base distribution N(0, 1) and three intervals S 1 =

(−∞,−1], S 2 = (−1, 1] and S 3 = (1,∞), we get:

H(S 1),H(S 2),H(S 3) ∼ Dir(α erf(−1), α(erf(1) − erf(−1)), α(1 − erf(1))) . (5)

Analogous to the DD that generates imperfect copies of the base distribution G0 (the
expectation of its samples) with the precision α, the DP generates samples that may be
considered imperfect, discretised copies of the base distribution H0 with precision α.
The higher the precision α, the better the sums of weights in the subsets, H(S j) match
the probability mass in the respective regions of the base distribution, H0(S j).

Posterior. When sampling from a DD given prior samples {xi}, the conjugacy of Dirich-
let and multinomial distributions leads to a posterior that takes into account the prior
observations as pseudo-counts added to the scaled base distribution:

Dir(~π |αG0) | {xi} = Dir(~π |αG0 + ~n) , ~n = {nk} , nk =
∑n

i=1δ(k − xi) , (6)

which may be easily justified using Bayes rule and the definitions of the multinomial
and DD:

p(~π | {xi}, αG0) ∝∏
iMult(xi |~π)Dir(~π |αG0) ∝∏

kπ
αG0(k)+nk−1
k ∝ Dir(~π |αG0 + ~n) . (7)

In the DP, this generalises to adding pseudo-counts to the scaled base distribution αH0:

H(S 1), . . . ,H(S N) | {θi} ∼ Dir(αH0(S 1) + n1, . . . , αH0(S N) + nN) , n j =
∑n

i=1δ(S j − θi) .
(8)

where δ(S j − x) is 1 for every x=θk ∈ S j. Considering that the DP sample has infinitely
many “spikes” at locations θk, we may use this to rewrite the posterior given observa-
tions:

H | {θi} ∼ DP(αH0 +
∑n

i=1δ(x − θi)) , (9)
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which may be separated into a modified precision α′ = α + n and base distribution
H′0 = αH0/(α+n)+1/(α+n) ·∑n

i=1 δ(x−θi), i.e., a mixture distribution with components
H0 and 1/n ·∑i δ(x − θi), the empirical distribution of the observations.

Predictive distribution. When considering the predictive distribution of the DP, i.e.,
the probability of a new data point θi drawn from some H ∼ DP(αH) given known
observations {θi}ni=1, the DP reveals one of its most important properties: it’s clustering
behaviour.

Again starting with DD, consider to draw a distribution G ∼ Dir(αG0), and to draw
n data points {xi}ni=1 from G. Knowing both αG0 and {xi}, the predictive distribution of
a new value x becomes:

x ∼ G | {xi}, αG0 ∼ Dir(~π |αG0 + ~n) ⇒ p(x=k | {xi}, αG0) =
nk + αG0(k)

n + α
, (10)

which again is due to the conjugacy between the DD and the multinomial distribution,
integrating out G:

p(x=k | {xi}, αG0) = ∫ Mult(x=k |~π) Dir(~π |αG0 + ~n) dG ,

=
B(αG0 + ~n + δ(x − k))

B(αG0 + ~n)
=
αG0(k) + nk

α + n
.

x | {xi}, αG0 ∼
αG0 +

∑K
k=1 nkδ(x − k)
α + n

. (11)

This illustrates the well-known “rich-get-richer” behaviour of the DD, which amplifies
dimensions k that have observations associated with them.

Generalising this to the DP, we consider a draw H ∼ DP(αH0) as defined above
and draw {θi}ni=1 ∼ H. As H is discrete and therefore conjugate to the DD that governs
the partition weights of H, we may as well integrate it out. We want the probability
of choosing a subset S j out of H | {θi}, which we know from (6) follows a DD. Using
(9) and (4), we get the subset probability masses as expectations over the posterior DP
sample:

p(θ ∈ S j | {θi}, αH0) =
〈
H(S j) | {θi}, αH0

〉
=
αH0(S j)

n + α
+

∑
i δ(S j − θi)

n + α
. (12)

Integrating out H here means summing over H(S j) over all partitions, which yields:

θ | {θi}, αH0 ∼
αH0 +

∑n
i=1 δ(θ − θi)

n + α
=
αH0 +

∑K+

k=1 nkδ(θ − θk)
n + α

(13)

where K+ is now a value that may increase as new data are observed: Either a new
sample θ ∼ H has been already seen, θ = θk = θi, i < n, or a new θk is observed,
incrementing K+. Note that (11) and (13) are structurally identical but differ in effect
due to the different properties of G0 and H0.

Similar to the DD, the DP enforces behaviour of the samples that tend to repeat ex-
isting observations, only that the arbitrary base distribution H0 now replaces the discrete
distribution G0 (that adds weight to existing θk) and adds weight to unknown compo-
nents out of a set of the infinitely many point masses in H. This modifies the “rich-
get-richer” behaviour in the sense that the precision parameter α does not “pull” values
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(d) Predictive component distribution.

Fig. 1. Mixture models: finite with Dirichlet prior in component weights, infinite with
DP prior on the components (weights and locations), Beta(2, 6) as base distribution.

towards the discrete weights of the base distribution but rather to offer additional loca-
tions in the parameter space S (H0) that may fit observations better.

Dirichlet process mixtures. The clustering behaviour of the DP is exploited in the
class of DP mixture (DPM) models that draw components θi ∼ H from a DP sample
H ∼ DP(αH0), where H0 is the component base distribution. According to (13), samples
θi are either known components θi = θk, k ≤ K+ (or, equivalently, θi = θ j, j < n) or
new components drawn from θi ∼ H0, and observations are drawn thus from known
or unknown components xi ∼ θi. The advantage of this scheme is that the number of
components K+ is not required as an input parameter of the model but grows with the
data, leading to a fully non-parametric mixture model.

In Fig. 1, the principle of the DPM model is illustrated (bottom), comparing it with
a finite mixture (top). Starting with the finite case, we have a model that uses Dirichlet-
distributed mixture proportions, ~π ∼ Dir(α) and a base distribution G0. Note that the
effect of the base distribution is not shown here; it can be any distribution parametrised
by ~ϕk which themselves are drawn from their base distribution, ~ϕk ∼ G0. The parameters
α in the finite mixture influences the weighting between the K components, as is seen
in (b).

The infinite case shown in (c) uses a DP sample as a prior on the components ~ϕn,
which takes the role of both the distribution over components ~π = {πk} and over com-
ponent locations ~ϕk in (a). As can be seen from the chart of the predictive component
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distribution, there is a clustered probability weight at locations in the support set of G0
where parameters have already been observed. The parameter α in the infinite mixture
influences the weighting between the existing components and new components, as is
seen in (d).

Sampling schemes. For both the DD and DP, illustrative sampling scenarios may be
formulated based on the predictive distributions. For the DD, the Pólya urn scheme ex-
presses the clustering behaviour: An urn is filled with of balls of unit size, K colours
and in quantities that match the weights in the scaled discrete distribution αG0 (for frac-
tional αG0(k), we allow ball segments, assuming that they are chosen with likelihoods
that match their size). After drawing a ball (or segment) from the urn and observing its
colour, it is returned to the urn together with an additional ball of the same colour, and
the next sample can be taken. This is also called “sampling with over-replacement”.

For the DP, the Pólya urn sampling scheme may be generalised: Instead of an initial
set of balls (and segments) with K colours and counts according to αG0, the urn is
now filled with a liquid that has infinitely many different colour mixtures, distributed
according to H0. The absolute amount of liquid is equal to α. The first sample in this
“generalised sampling with over-replacement” scheme now draws a volume of liquid
and returns the liquid and an additional ball of the sampled liquid colour. The second
sample either draws the ball or from the liquid and adds the sampled colour and so on.

Alternatively, in the DP and DPM literature, the metaphor of a “Chinese restaurant
process” (CRP) has been used to illustrate the sampling behaviour: A Chinese restaurant
has infinitely many tables, and customers enter the room, deciding whether to share a
table k with other customers with probability nk or choosing a new table with probability
α. Sharing a table k corresponds to drawing values from a component ~θi = ~θ j that has
been seen before, and sitting at a new table to a sample from the base distribution. The
Chinese restaurant process is typically described by the label likelihoods of predictive
samples, marginalising component locations θk from (13):

p(x=k|{xi}, α) =


nk

n + α
nk > 0

α

n + α
new table/colour/component.

(14)

Hierarchical Dirichlet process. Although modelling mixtures with DP priors turns
out simple, when considering admixture as in the LDA model, things become more
complicated because in effect multiple parameters ~ϕk are supposed to be shared among
documents (which are mixtures of ~ϕk with proportions defined by ~ϑm; please refer to
[Hein09b] for explanations on LDA and the notation used). A naı̈ve approach would
be to sample weights ~ϑm ∼ G ∼ DP(αG0) and then from these weights the indices
zm,n=k for the ~ϕk in the document. This works but does not implement admixture, as
it clusters ~ϑm to either new parameters or reusing existing ones, thus rather creating a
hard clustering of documents, as has been shown in [YYT05].

Another approach that may be considered is to sample ~ϕk for every word (m, n), thus
creating new components or topics as needed, i.e., sampling ~ϕm,n ∼ H0. The question is
how to make the ~ϕm,n shared between documents. If they are created from a single base
distribution (following LDA, this should be Dir(β)), i.e., ~ϕm,n ∼ Gm ∼ DP(αDir(β)),
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Fig. 2. Hierarical Dirichlet process: (a) Bayesian network of full model, (b) its repre-
sentation with stick-breaking prior, and (c) LDA as the finite equivalent to the HDP.

each Gm will create its own set of spikes in the parameter space from the continuous
Dirichlet base distribution. Therefore almost surely documents will have disjoint ~ϕm,n,
which prevents sharing of topics.

The solution is to share a discrete base distribution between documents whose
spikes may be shared. The idea of the hierarchical DP is to create such a discrete
base distribution for the document DPs by sampling from a DP itself. In such a hi-
erarchy, the root DP gets the Dirichlet of the topics from LDA as a base distribution,
H ∼ DP(γDir(β)), and each document samples from H, so it “filters” its set of discrete
masses, generating a distribution over a subset of them, Gm ∼ DP(αH). The masses ~ϕk

shared between the different Gm have associated the same meaning as the ~ϕk ∼ Dir(β)
in LDA.

The actual Bayesian network of the full model is given in Fig. 2(a), but according
to the discrete nature of the sample G0, a simplified representation may be given in Fig.
2(b) that uses an infinite-dimensional multinomial ~π to represent the root DP sample G0

as the prior over document multinomials ~ϑm that represent the document DP samples
Gm and can be used to explicitly sample topic indicator variables zm,n.

This representation has been often termed the stick-breaking prior (SBP [Teh10])
representation because a priori the point masses of ~π are distributed like the lengths of
pieces broken off a stick infinitely many times with break points distributed Beta(1, α)
on the stick remaining at each step [Seth94]. This stick-breaking process is often re-
ferred to as GEM distribution (after Griffiths–Engen–McCloskey), ~π ∼ GEM(α).

Interestingly, both ~ϑm and zm,n are equivalent to those in LDA, only that ~ϑ are
infinite-dimensional and distributed according to ~ϑm ∼ Dir(α0~π). In this representa-
tion, the base distribution Gϕ = Dir(β) can be explicitly indexed by the topic indicators
zm,n=k. For reference, the Bayesian network of LDA is given in Fig. 2(c).
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In HDP, the DP clustering scheme still applies, but now an additional layer needs to
be added to accommodate for the clustering between DPs, yielding the Chinese restau-
rant franchise (CRF) process [TJB+06] as a samling scheme: There are now M Chinese
restaurants, and each one has infinitely many tables. On each table the restaurant serves
one of infinitely many dishes that other restaurants may serve as well. When entering
the restaurant, customers not only choose a table (topic; sample from Gϕ appearing in
G0), but also whether they may have a dish popular among several restaurants (topic
shared among documents; samples from Gϕ appearing in several Gm).

3 Infinite LDA as simple HDP implementation

The published inference algorithms relevant to the HDP belong to Gibbs sampling
[TJB+06] and variational methods (including collapsed ones) [KWT07]. Here, we fo-
cus on a Gibbs sampling method that empirically proved effective while staying close
to the parametric case. Gibbs sampling for the HDP is based on one of the DP repre-
sentations described above, SBP or CRF. Alternatively, a “direct assignment” technique
that has been shown to be flexible enough to work with extensions of the basic HDP
model [TJB+06,PNI+08] and will be adopted here. There are various other approaches
to implement HDP inference, so in the seminal [TJB+04,TJB+06] several algorithms
exhibit high implementation complexity and memory footprint, which led [GGJ06] to
develop a simplified approach based on the CRF representation (i.e., integrating out
the DPs), and in [BGC+09] further improvements and correction to this algorithm have
been presented. Another approach is to use slice sampling from the SBP prior directly,
similar to [TGG07] for the related Indian buffet process.

Directly sampling in the stick-breaking representation does not integrate out the
Dirichlet process and modularises the inference equations into finite and infinite parts.
This follows the original approach of [TJB+06] but uses a variant proposed by [Port10].

Consider an LDA model where the Dirichlet hyperparameter ~α is split into a scalar
precision α and a base distribution ~τwith ~τ ∼ Dir(γ/K). Taking this to the limit K → ∞,
the HDP is represented by a root distribution ~τ ∼ Dir(γ/K), i.e., the weak limit ap-
proximation of the weights of a stick-breaking representation of the Dirichlet process
[IsZa02], and its descendant distributions ~ϑm ∼ Dir(α~τ) [TJB+06,PBW08]. As in col-
lapsed Gibbs sampling, the root level parameters ~τ may in principle be integrated out.
However, as the Dirichlet is not conjugate to itself, integration becomes difficult and
things may be easier when the parameters are kept in the model directly.

Another advantage of the SBP-based approach is that the infinite extension of the
coupled mixture (LDA) retains the structure of the finite case for the Gibbs update of z:

p(zi=k|·) ∝ (n¬i
m,k + ατk) ·

n¬i
k,t + β

n¬i
k + Vβ

(15)

with α as a precision parameter now. Note that the sampling space has K+1 dimensions,
with the last point mass ατK+1/V , which represents all unseen components. Whenever
this mass is sampled, a new topic is created.

The prior proportions ~τ can be sampled by simulating how new components are
created for nm,k draws from the DP with precision ατk (dishes in the CRF), which is a
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sequence of Bernoulli trials for each m and k:

p(mm,k,r=1) =
ατk

ατk + r − 1
∀r ∈ [1, nm,k],m ∈ [1,M], k ∈ [1,K] (16)

A posterior sample of the root distribution then is obtained via:

~τ ∼ Dir({mk}k, γ) with mk =
∑

m
∑

rmm,k,r (17)

which updates the probability of the root distribution and consequently the means of the
hyperparameters on the second HDP level. Note that ~τ has dimension K + 1 because the
mass belonging to γ in the Dirichlet sampler is associated with generating a component
out of an infinite set of empty components. If a component has lost all its data points, it
is merged with the unknown components in the mass associated with γ.

The simulation of new tables to find τ is due to [Port10] and simplifies the direct
assignment scheme in [TJB+06] that showed that in general under CRP the number
of tables u for n customers is p(mm,k |α, nm,k) ∝ s(nm,k,mm,k)(ατk)m where s(n,m) is an
unsigned Stirling number of the first kind1[AbSt64].

For completeness, we note that sampling has also been shown effective with the
stick-breaking distribution sampled from directly by slice sampling [TGG07] and there
are different other published methods [IsJa03].

Hyperparameter sampling. Following the approach presented with the HDP [TJB+06],
for the precision parameter of the DPs gamma priors may be assumed, introducing
hyper-prior parameters aγ, bγ and aα, bα. There are two ways to be pursued for sam-
pling them: [EsWe95] propose an auxiliary variable method that allows sampling using
standard distributions, and [Rasm00,NGS+06] proposes an adaptive rejection sampler
for a non-standard log-concave distribution [GiWi92].

Using the simpler first approach, auxiliary variables u, v are introduced for the DP
hyperparameter γ of the root process that are governed by Bernoulli and beta distribu-
tions. The actual parameter is sampled then using the gamma distribution [EsWe95]:

u ∼ Bern
(

T
T + γ

)
, v ∼ Beta(γ + 1,T ) (18)

γ ∼ Gam(aγ + K − 1 + u, bγ − log v) (19)

where T =
∑

kmk is the augmented variable of the τ sampler described in the previous
section.2 Similar to this but with a small modification from [TJB+06], the second-level
hyperparameter can be sampled using um, vm as auxiliary parameters and the “dimen-

1 Unsigned Stirling numbers of the first kind describe the number of permutation cycles of size
m in a set of n elements. An iterative rule is s(n + 1,m + 1) = s(n,m) + ns(n,m + 1) with
s(n, n) = 1 and s(n,m) = 0∀u > n.

2 It is the total number of tables in the CRF that serves as “count” of the items to be drawn from
the root CRP
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Algorithm LdaGibbsHdp({~w});
Input: word vectors {~w}
Optional input: initial values for hyperparameters α, β, γ, topic number K0 and parameters for

hyperparameter priors aα, bα etc. to speed up convergence
Global data: count statistics {nm,k}, {nk,t} and their sums {nm}, {nk}, Dirichlet parameter ~τ, memory

for full conditional array p(zi |·), lists of used and unused topic indices U1,0.
Output: topic associations {~z}, topic dimension K, multinomial parameters Θ and Φ, hyperparameter

estimates α~τ, β, γ
// initialisation
K = K0 (default K = 1);
zero all count variables, nm,k , nm, nk,t , nk;
U1 = [1,K], U0 = [K + 1,Kmax];
for all documents m ∈ [1,M] do

for all words n ∈ [1,Nm] in document m do
sample topic index zm,n=k ∼ Mult(1/K);
increment counts and sum: nm,k += 1, nk,t += 1, nk += 1;

sample ~τ using (17);
// Gibbs sampling over burn-in period and sampling period
while not finished do

for all documents m ∈ [1,M] do
for all words n ∈ [1,Nm] in document m do
// for the current assignment of k to a term t for word wm,n:
decrement counts and sums: nm,k −= 1; nk,t −= 1; nk −= 1;
// multinomial sampling using (15) with range [1,K + 1]:
sample topic index k̃ ∼ p(zi |~z¬i, ~w, α~τ, β, γ,K);
if k̃ ∈ [1,K] then
// for the new assignment of zm,n to the term t for word wm,n:

k∗ = U1(k̃); increment counts and sums: nm,k∗ += 1; nk∗ ,t += 1; nk∗ += 1;

else
// create new topic from term t in document m as first
assignment:

k∗ = pop(U0), push(U1, k∗), K += 1;
nm,k∗ = 1, nk∗ = 1, nk∗ ,t = 1;
sample ~τ using (17);

zm,n = k∗;

// check convergence and read out parameters
if converged and L sampling iterations since last read out then
// the different parameters read outs are averaged.
read out parameter sets Φ and Θ;

else if not converged then
for k ∈ [1,K] do

if nk = 0 then
// prune empty topic k
remove(U1, k), push(U0, k), K −= 1, empty counts nm,k , nk,t , nk;

sample the number of tables used using and from this ~τ using (17) or the “Antoniak-type”
sampler;
sample α using (21);
sample γ using (19);
estimate β;

Fig. 3. Gibbs sampling algorithm for the hierarchical Dirichlet process.
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sion” T 3:

um ∼ Bern
(

nm

nm + α

)
, vm ∼ Beta(α + 1, nm) (20)

α ∼ Gam(aα + T −∑
mum, bα −∑

m log vm) (21)

Finally, the Dirichlet hyperparameter β can be estimated using one of the approaches
in [Mink00,Hein09a], by using adaptive rejection sampling [GiWi92] or slice sampling
[Wall08]. Another approach using auxiliary variables similar to the above approach is
equally possible and has been derived in a similar setting to Dirichlet hyperparameters
in [NAS+09].

Sampling algorithm. The complete sampling algorithm performs the three different
sampler types for the parametric model, the non-parametric prior and the hyperparam-
eters in turn, as shown in Fig. 3.

Note that sampling ~τ is triggered by the occurrence of new components in the inner
loop, but pruning of empty components may be done still on a corpus-wise schedule for
performance reasons. In terms of keeping track of data for a changing number of topics,
a simple method is to maintain lists or stacks of active and inactive topic indices that
new components are popped from and empty ones pushed onto for reuse. In a straight-
forward implementation, the overhead of dynamic memory handling should be reduced,
using a reasonably high upper limit of (reusable) component labels Kmax and working
with static array structures of that size, possibly re-instantiating the potentially large
rows in nk,t on demand.

4 Conclusion

In this note, we have introduced the properties of the Dirichlet process by comparing
it to the Dirichlet distribution and derived the hierarchical Dirichlet process. Based on
this, we have presented a simple implementation of the HDP that makes use of Teh’s
“direct assignment scheme” and may be seen as an infinite extension of the finite LDA
model.

In the future, some investigation may go into the implementational aspects of par-
allelisms and serial fast sampling, analogous to the finite case of fast sampling LDA
[PNI+08] or [YMM09].

To continue studies on the DP and HDP, the articles [TJB+06,TeJo09,Neal98,Teh10]
are recommended and will introduce additional concepts that have been left out here for
simplicity.
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